A new System for Linguistic Rewriting and **Formal Semantics**

Mark-Matthias Zymla University of Konstanz Mark-Matthias.Zymla@uni-konstanz.de

Universität Konstanz

About

We present a system for **rewriting** and **expansion** of linguistic annotations. It is illustrated by virtue of syntax/semantics rules producing semantic representations based on Glue semantics.

- Interfaced with the Stanford CoreNLP and the XLE for syntactic parsing
- Interfaced with the Glue Semantics Workbench for **semantic analysis**
- Micro-service architecture
- Developed in **Java** and licensed under

Simple Graph matching techniques are combined with constraint and equation checking techniques inspired by Lexical Functional Grammar (LFG) to define expansion and rewrite rules.

- Inspired by the Packed Rewrite System in XLE (Crouch, 2005)
- Translation of graphs into fact notation \rightarrow useful for ambiguity management via packing (Maxwell III and Kaplan, 1989)

The system makes use of the Glue Semantics Workbench(GSWB; Meßmer and Zymla (2018)) for semantic analysis.

- Glue semantics is a **resource** conscious approach to formal semantics (Dalrymple et al., 1999)
- Composition is guided by **linear logic**
- Compatible with various semantic representations that preserve the Curry-Howard-isomorphism, e.g. λ -DRT, FOL, and other semantics based on

GPL 3.0

- Available at:
- https://github.com/Mmaz1988/ abstract-syntax-annotator-web
- Feedback and feature requests welcome!
- (1) a Fact notation: $#[a-z] + REL { #[a-z] + |VALUE }$ bquery ==> expansion.
- Choice-packing currently in development
- \rightarrow Ambiguous rules don't scale well yet

lambda calculus

 $\lambda x \cdot \lambda y \cdot loves(x, y) : 1 \multimap (3 \multimap 2) john : 1$ $\lambda y.kiss(john, y): 3 \rightarrow 2$ mary:3 *loves*(*john*, *mary*) : 2

Figure 1: Glue derivation of John loves Mary.

Semantic representations via linguistic rewriting

1. Normalizing linguistic annotations

- Linguistic annotations are normalized into graph structures (inspired by Ide and Bunt (2010))

John kissed a girl. (2)

3. Formal semantics via rewriting

- Quantifier treatment according to Dalrymple et al. (1999)
- Syntax expanded with SEMantic structure (see (5))
- The glue representation is instantiated in rule (6)

Node representation: Attr1 Value1 *n* Attr2 Value2 **Dependency example:** TOKEN kissed 2 TAG VBD POS 2

f-structure example: 2 PRED 'kiss<1,4>'

Figure 3: Abstract syntactic graph for John kissed a girl.

2. Designing rewrite rules

- Query language for Graph-matching
 - Variables over nodes (#a,#b,#c,...)
 - Variables over values (%a,%b,%c,...)
- LFG-style constraint checking (for directed graphs)
 - Functional application, functional uncertainty
- Dictionary specification and look-up
- Equality checking

#h ^(SPEC) #g ==> #g SEM #i VAR #j & #i RESTR #k. (5)

- (6) a#g PRED `every' & #g ^(SPEC) #h SEM #i VAR #j & #i RESTR #k & #h ^(%%) #f ==> #i GLUE (#j -o #k) -o ((#i -o #f)-o #f)) : every $b(3 \rightarrow 5) \rightarrow ((4 \rightarrow 0) \rightarrow 0) : every$
- Descrition-by-analysis approach based on Andrews (2008) - GSWB reads out GLUE values and calculates semantics

4. Demo

A demo illustrating the implementation of the system as a microservice is available at:

https://github.com/Mmaz1988/abstract-syntax-annotator-client

It makes use of cytoscape.js to present the abstract syntactic graph in cyan and the added annotations in red. Furthermore, it presents the resulting semantic derivation, if available.

Now displaying graph for "Every man loves a woman."

Selected references: • Andrews, Avery D. 2008. The Role of PRED in LFG + Glue. In Proceedings of the LFG08 Conference, Pages 47–67. • Crouch, Richard. 2005. Packed Rewriting for Mapping Semantics to KR. In Proceedings of the Sixth International Workshop on Computational Semantics (IWCS-6), Pages 103–114. Tilburg. • Dalrymple, Mary, John Lamping, Fernando Pereira, and Vijay Saraswat. 1999. Quantification, Anaphora, and Intensionality. In M. Dalrymple, editor, Semantics and Syntax in Lexical Functional Grammar – The Resource Logic Approach, Pages 39–89. • Ide, Nancy and Harry Bunt. 2010. Anatomy of Annotation Schemes: Mapping to GrAF. In Proceedings of the Fourth Linguistic Annotation Workshop, Pages 247–255. • Maxwell III, John T and Ronald M Kaplan. 1989. An Overview of Disjunctive Constraint Satisfaction. In Proceedings of the First International Workshop on Parsing Technologies, Pages 18–27. • Meßmer, Moritz and Mark-Matthias Zymla. 2018. The Glue Semantics Workbench: A Modular Toolkit for Exploring Linear Logic and Glue Semantics. In M. Butt and T. H. King, editors., Proceedings of the LFG'18 Conference, University of Vienna, Pages 249–263. Stanford, CA: CSLI Publications.